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Abstract The case of unsteady two-dimensional laminar free convection flow over a vertical 
plate by an incompressible viscous fluid is analysed in the presence of uniform magnetic field 
perpendicular to the flow. The governing equations in a vector form are transformed into non-
dimensional form. Then, the dimensionless equations are solved using automated solution 
technique which is FEniCS. The effects of magnetic parameter on the velocity and temperature 
profiles are obtained and discussed in this paper. 
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INTRODUCTION 

The study of magnetic field effects on the behaviour of fluid flow is called magnetohydro-
dynamics (MHD). The fluid must be electrically conducting fluid with the presence of magnetic 
field. It is more interesting to explore MHD in convective flow due to the fact that increasing the 
magnetic parameter may decrease the velocity and temperature profile. For example, 
Soundalgekar et al. (1979) solved MHD free convective flow and found that increasing magnetic 
parameter lead to increase the velocity in the heated plate while decrease the velocity in the 
cooled plate. Pop et al. (1994) concentrated on MHD forced convective over a semi-infinite flat 
plate and concluded that the increasing of magnetic parameter will decrease the temperature 
profile. Aydın & Kaya (2008) studied the magnetic effects on mixed convection flow and 
summarized that increasing magnetic parameter will increase the temperature and velocity 
gradient at plate. 

In this study, we focus on unsteady laminar case where the flow is dependent on time. 
Several papers studied on unsteady MHD free convective flow at vertical plate. Hossain & 
Mandal (1985) solved MHD at different temperature accelerated porous plate. They found that 
when magnetic parameter increases, the velocity decreases for greater cooling plate while velo-
city increases for greater heating plate. Helmy (1998) concluded that velocity decreases when 
magnetic parameter increases past a vertical porous plate using. In addition, same result as 
Helmy (1998) is presented by Abd El-Naby et al. (2003) in their paper with variable surface 
temperature at vertical plate. 

There are papers solved time dependent convective flow using different method such as 
shooting method (Pop et al., 1980), Keller box method (Kumari et al., 1996) and finite difference 
method (Abd El-Naby et al. , 2003) . In this paper, we will use finite element method (FEM). FEM 
is chosen to solve fluid dynamics problems due to its capability to deal with complex geometries. 
The incompressible Navier–Stokes equations can be discretized in many ways i.e. Chorin’s 
projection scheme (Chorin, 1968), the incremental pressure correction scheme (IPCS) (Goda, 
1979), consistent splitting scheme (CSS) (Guermond et al., 2006 ) and least square galerkin sta-
bilized method (G2) (Hoffman & Johnson, 2007). There are papers that solved time dependent 
convective heat transfer using discretization scheme. Wong (2007) solved mixed convection in 
lid driven cavity using CSS. Later, Jia et al. (2011) investigated same problem as Wong (2007) 
using operator splitting scheme. Meanwhile, Amine et al. (2013) implemented Chorin’s method 

mailto:farahain@iium.edu.my


Annals of Mathematical Modeling, 1 (2), 2019, - 82 
Nor Raihan Mohamad Asimoni, Nurul Farahain Mohammad, Abdul Rahman Mohd Kasim  

Copyright © 2019, Annals of Mathematical Modeling, ISSN 7215-7822 

in solving free convection in vertical open-ended channel. Górecki & Szumbarski (2014) used 
unconditionally stable splitting scheme to solve free convection in square cavity.  

Furthermore, we will solve our governing equations using automated solution technique 
which is FEniCS (Logg et al., 2012). FEniCS is an open source software project to solve partial 
differential equations by implementing finite element method efficiently. FEniCS can solve 
vector form equation directly using Python programming. Several papers started using FEniCS 
to solve convective heat transfer such as Zhang et al. (2016)  for steady case using coupling 
method and Stepanov et al. (2016) for unsteady case using G2 method and streamline 
upwinding Petrov-Galerkin (SUPG) method.  

The current work is applying automated solution approach for solving time dependent 
MHD free convective flow of viscous incompressible electrically conducting fluid past a vertical 
plate. For the discretization, we use CSS method. The magnetic field effects on the velocity and 
temperature profiles are discussed. 

MATHEMATICAL FORMULATION 

Governing equations 

Unsteady two-dimensional MHD free convective laminar flow of incompressible viscous 
fluid past a vertical plate in the presence of transverse magnetic field is explored. Let   be a 

bounded/ domain and 
ft be a fixed final time. The flow is taken parallel to the vertical plate in 

x −axis in upward direction, and the y − axis is taken normal to it. 

 

Figure 1. Flow configuration with    0,0.03 0,0.01=   

The governing equations for this problem are: 
ContinuityEquation: 
 0 =u   (1) 

Momentum Equation: 

( ) ( )2 2

0gxp T T i B
t




+  = − +   − −



u
u u u + u   (2) 

Energy Equation: 

( ) 2Cp

T
T c T

t


+  = 


u     (3)  

where ( , )u v=u is the fluid velocity,  is the fluid density, p represents pressure difference due 

to the ‘pumping’ action of the flow,  is the dynamic viscosity, is the electrical conductivity of 

the fluid,
0B is the magnetic field strength, g x

is the gravity acceleration applied to the flow 

in x − direction, C p
is the heat capacitance of the fluid, c  is the thermal conductivity of the fluid 

and T  is the fluid temperature subject to initial and boundary conditions: 
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wT  is the temperature of the wall, T  is the uniform temperature and U
is the uniform velocity. 

Next, (1) – (3) can be converted to non-dimensional form, using the following dimension-
less parameters: 

( )

2 1* * * *, , , ,

*
w

L
U t t p U p

U L

T T T T T 

= =   = 

− = −
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The dimensionless governing equations can be written as follow: 
0 =u    (4) 
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with corresponding dimensionless parameters defined as 
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where Re  is the Reynold number, Gr  is the Grashof number, Pr  is the Prandtl number and M is 
the magnetic parameter with respect to dimensionless initial and boundary conditions:  

0 : 0, 0, 0, for all ,

0 : 1, 0, 0, for = 0, 0 0.03 

0, 1, 0, for = 0.01, 0 0.03

0, 1, 0, for = 0, 0 0.01

t T u v x y

t T u v y x

T u v y x

T u v x y

= = = =

 = = =  

= = =  

= = =  

 

Consistent splitting scheme 

Consistent splitting scheme (CSS) is chosen to solve this time-dependent problem due to 
unconditionally stable for first and second order scheme (Guermond et al., 2006). Backward 
Euler method is used for the time derivative. Equations (4) – (6) can be written as following 
steps. 

Step 1: We start by solving the velocity 1n+
u .  

( )
1

1 2 1

1

2

1

Re

Re

n n
n n n n

n n

p
t

Gr
T i M

+
+ +

+

−
+  = − + 



+ −

u u
u u u

u

    (7) 

Step 2: After that, we introduce auxiliary pressure  . 
1

1
n n

n

t


+
+ −

 =


u u
    (8) 

Step 3: Then, we solve the pressure p .  

1 1 11

Re

n n n n
p p

+ + +
= + − u     (9) 

Step 4: Finally, we solve the temperature T .  
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1
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+
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    (10) 

Weak formulation 

In order to solve this problem using finite element method, variational form is constructed 
using Galerkin weighted residual approach for the discretization of governing equations. Taylor 
Hood element is considered to obtain the mesh of the domain for this problem where V is 
continuous quadratic polynomial function and Q is continuous linear polynomial function. 
Meanwhile, continuous quadratic polynomial function L is used for the heat transfer equation.   

Equations (7) – (10) are multiplied by the test functions and integrated over the domain 
0,0.03 0,0.01      =  . We have , pu  and T  as functions whereas ,qv  and s  as test functions 

such that Vu,v , , Qp q  and , LT s .  

Step 1:  First, we multiply (7) with test function v . We apply integration by part and Gauss 

divergence theorem for second order derivatives 2 1n+
 u . 
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Step 2: After that,we multiply the auxiliary pressure by a test function q . 
1

1
n n

n q q
t


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 
 



+
+
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Step 3: Then, we multiply (9) with test function q . 
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Step 4: Lastly, we multiply (10) with test function s . We apply integration by part and Gauss 

divergence theorem for second order derivatives 2 1n
T

+
 . 
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RESULTS AND DISCUSSION 

In this section, we present the investigation of free convective flow with magnetic field 
effects past a vertical plate. Equations (11) – (14) are solved numerically using FEniCS (Alnaes 
et al., 2015) and the post-processing of solutions obtained is interpreted using Paraview.  The 

dimensionless parameter
2

Pr = 0.71,Re = 10 , 6
= 10Gr  and Richardson number for free 

convection 2
Ri = Re = 100Gr is fixed throughout the computation. We demonstrate the velocity 

and the temperature profiles with four different values of magnetic parameter such as 
0,100,200 and 500M = . The time step 0.002t =  is used with 500 steps and all the numerical 

results are completed at 1ft =  .  

The grid independence test has been conducted and the results are presented in Table 1. It 
is shown that grid size of 64 64  gives insignificant difference with grid size of 32 32 . Hence, 
we use this grid size to execute all results.  
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Table 1. Grid independent test ( 0, 1fM t= = ) 

Mesh size 
max

u  
max

T  

8 8   1.33308708281 0.999999915505 
16 16  1.33329246271 0.999999037437 
32 32  1.33356932394 0.999997792891 
64 64  1.33354523905 0.999993768883 

128 128  1.33346003878 0.999997689405 
256 256  1.33308551111 0.999988630221 

Velocity profiles 

The results of magnetic parameter effects on velocity profile at different time steps is pre-
sented on Figure 2. Tables 2 and 3 show the value of ( )0.01,0.001u at 0.05,0.1,0.3 and 1t = while 

maxu at final time 1ft = . It is found that the velocity profile decreases as magnetic parameter 

increases. 

Table 2. Value of u at different t  at ( )0.01,0.001u  

M  0.05t =  0.1t =  0.2t =  0.3t =  1t =  

0 0.2141 0.2703 0.3263 0.3515 0.3721 
100 0.2114 0.2694 0.3280 0.3556 0.3806 
200 0.2090 0.2687 0.3293 0.3592 0.3887 
500 0.2024 0.2667 0.3322 0.3677 0.4111 

Table 3. Value of 
maxu at final time 1ft =  

M  
maxu  

0 1.33354523905 
100 1.32597268872 
200 1.31884720597 
500 1.29827490852 

Temperature profiles 

The magnetic parameter effects on temperature profile at different time steps is observed. 
Tables 4 and 5 show the values of  ( )0.01,0.001T at 0.004, 0.01, 0.03 and 1t =  and 

maxT at final 

time 1ft = . It is found that no significance difference at all on temperature profile regardless of 

magnetic parameter values. 

Table 4. Value of T at different t at ( )0.01,0.001T  

M  0.004t =  0.01t =  0.03t =  1t =  

0 0.842014 0.897386 0.891145 0.891134 
100 0.842014 0.897386 0.891145 0.891134 
200 0.842014 0.897386 0.891145 0.891134 
500 0.842014 0.897386 0.891145 0.891134 

Table 5. Value of 
maxT at final time 1ft =  

M  
maxT  

0 0.999993768883 
100 0.999993768883 
200 0.999993768883 
500 0.999993768883 
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a) 

 

b) 

 
c) 

 

d) 

 

Figure 2. Velocity profiles when a) 0, b) 100 c) 200 and d) 500 at 0.1M M M M t= = = = =  

CONCLUSION 

In this paper, time dependent flow with transverse magnetic field effects past a vertical 
plate was considered. The dimensionless governing equations were solved using finite element 
method with consisting splitting scheme in FEniCS. It was found that increasing magnetic 
parameter where 0,100,200 and 500M =  lead to decreasing the velocity profile. Meanwhile, no 

significance difference for temperature profile under the presence of magnetic effect. 
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